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The research effort described in this paper aims to develop a state-of-
the-practice methodology for estimating urban trip generation from 
mixed-use developments. The District Department of Transportation’s 
initiative focused on (a) developing and testing a data collection method-
ology, (b) collecting local data to complement the ITE’s national data in 
trip rate estimation, and (c) developing a model–tool that incorporates 
contextual factors identified as affecting overall trip rate as well as trip 
rate by mode. The final model accurately predicts total person trips and 
mode choice. The full set of models achieves better statistical performance 
in relation to average model error and goodness of fit than either ITE 
rates alone or other existing research. The model includes sensitivity to 
local environment and on-site components. The model advances site-level 
trip generation research in two major ways: first, it calculates total person 
trips independent of mode choice; second, it calculates mode choice with 
sensitivity to the amount of parking provided on site—a major finding in 
the connection between parking provision and travel behavior at a local-
site level. The methodology allows agencies to improve their assessment of 
expected trips from proposed buildings and therefore the level of impact 
a planned building may have on the transportation system.

The expected magnitude of environmental and travel impacts from 
proposed land use development hinges on trip generation rates used 
in the analysis of the site. Common practice is the use of the ITE 
Trip Generation Manual, 9th edition, as the key reference to derive 
appropriate estimates of vehicular traffic generation (1). ITE is an 
extensive and robust data source, with vehicle trip generation rates 
for hundreds of land uses for multiple periods (2). However, ITE’s 
trip generation rates are primarily based on automobile-oriented 
single-use suburban developments and do not forecast multimodal 
travel by nonauto modes. This approach counts the number of vehi-
cles from a development rather than the number of people, which 
generally means that the rates are poorly suited to assess impacts of 
mixed-use development sites in multimodal urban areas that can have 

considerable nonvehicle trip making. Considering trips by modes 
is particularly important for Washington, D.C., and similar cities 
where mixed-use developments with significant volume of nonauto 
traffic are common.

The latest ITE Trip Generation Handbook, 3rd edition, provides 
guidance on how to estimate vehicle trips in transit-oriented mixed-
use urban development settings (2). But as a result of ITE’s auto
mobile focus, the application of ITE’s trip rates to estimate vehicle 
trips generated by mixed-use development sites located in transit-
rich, high-density cities with parking constraints likely leads to an  
overestimation of vehicular trips and parking demand and an under
estimation of nonvehicular trips. This situation has several implications 
for cities:

•	 Inaccurate infrastructure investment decisions, such as over
investment in vehicle capacity expansion and parking infrastructure 
and underinvestment in pedestrian, bicycle, and transit infrastructure;

•	 Overprediction of environmental impacts, including air quality 
and greenhouse gas emissions levels; and

•	 Fewer incentives to develop “smart” infill, mixed-use develop-
ments as developers do not receive credit for reduced automobile 
trip-making patterns.

Motivated by these issues, the District Department of Transpor-
tation (DOT) undertook a research effort in 2013 to develop an 
improved methodology for estimating urban trip generation from 
mixed-use developments in a dense urban environment that accounts 
for nonautomobile trips. This process included (a) developing and 
testing a data collection methodology, (b) collecting local data 
to complement the ITE’s national data in trip rates estimation, and 
(c) developing a model–tool that incorporates contextual factors 
identified as affecting overall trip rate as well as trip rate by mode. 
This initiative was divided into three phases: Phase 1, initial data 
collection and observations; Phase 2, additional data collection and 
preliminary modeling; and Phase 3, refinement of final model and 
tool development.

Trip Generation in an Urban Setting: 
Evidence from the Literature

Increasingly, urban trip generation has been the focus of many 
studies that can be divided into two broad groups. The first group 
includes studies that analyzed the effects of urban context variables 
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on trip generation or associated travel behavior, such as vehicle 
miles traveled (VMT). Many studies have examined links between 
built environment and demand for travel. The built environment 
generally refers to the D-variables: density, diversity, design, devel-
opment scale, demographics, distance to transit, and destination 
accessibility. In one of the earlier studies, Cervero and Kockelman 
explored the effect of density, diversity, and design on household 
VMT and mode choice for non-commute trips and found that these 
D-variables have a negative impact on household VMT and positive 
impact on nonauto mode choice (3). Ewing and Cervero, after an 
extensive literature review, concluded that, in addition to producing  
shorter trips, built-environment criteria are likely to foster substitution 
between auto trips and nonauto trips (4). Zhang et al. (5) and Ewing 
et al. (6) also found a negative correlation between VMT and high-
density, mixed-use developments. A number of studies found asso
ciation between auto trips and transit proximity. For example, Clifton 
et al. found that proximity to transit plays a role in reducing vehicle 
trips (7), while Ewing and Cervero suggested that proximity to transit 
is likely to induce fewer vehicle trips and more walk and transit trips 
(4). In the same study, Ewing and Cervero found a strong relationship 
between VMT and destination accessibility.

Several studies have identified parking availability and pricing as 
important context variables. Cervero et al. found that most transit-
oriented developments have more parking spaces than required (8). 
This finding was also supported by Tian et al. (9). An oversupply of 
parking spaces may lead to an increase in auto ownership and auto 
trips. Indeed, agencies in areas rich in transit-oriented developments, 
such as the District DOT (10) and King County, Washington (11), 
have recently developed models and web-based tools in an effort to 
provide more accurate estimation of parking needs for multifamily 
residential buildings. The data underlying the District DOT study 
indicate that most residential parking garages in the District are 
underutilized. A study by Frank et al. noted strong negative correla-
tion between parking cost and VMT; that is, a noticeable increase in 
parking cost is likely to decrease VMT (12).

The second group of studies focused on estimation of trip gen-
eration. Specifically, these studies focused on offering alternatives 
to ITE trip generation rates that are more suitable for urban transit-
oriented, mixed-use developments. Examples of such studies 
include these:

•	 URBEMIS 2007 (2007). Outputs include ITE-based vehicular 
trip reductions (13).

•	 EPA-MXD Traffic Generated by Mixed-Use Developments 
(2011): Outputs include ITE-based vehicular trip reductions, ITE-
derived transit trips, ITE-derived walking trips, and internally captured 
trips (14).

•	 SANDAG MXD Trip Generation for Smart Growth (2010). 
This is an adaptation of the EPA-MXD model (15).

•	 NCHRP Report 684 (2011). Outputs include ITE-based vehicular 
trip reductions (16).

•	 California Smart Growth Trip Generation (2014). Outputs 
include ITE-based vehicular trip reductions (17).

•	 NCHRP Report 758 (2013). Outputs include ITE-based vehicular 
trip reductions (18).

•	 MXD+ (2013). This covers a refined methodology combining 
EPA-MXD and NCHRP Report 684 (19).

•	 Portland State University models (2012). Outputs include 
ITE-based vehicular trip reductions and trips by mode (7).

A subset of the research on trip generation estimates has started 
to investigate the concept of person trip generation, especially in an 
urban context. An early finding of this research was that the overall 
person trips were much higher than expected via ITE (even with a 
vehicle occupancy factor) alone. Existing research has observed this 
result from different angles, such as the finding that common trip 
generation methodologies overestimate vehicle trips while under
estimating person trips (20) and direct discussions of person trips 
for smart-growth infill projects (21).

The literature has suggested that the benefits of using ITE  
as a basis of trip generation include a large established database 
of rates by land use, widespread industry acceptance, and relative 
ease of use. One potential drawback includes sacrificing local 
context for the breadth of data at the national level. ITE itself 
has recognized the need to move toward person-based trip gen-
eration, especially in urban areas, and created an urban trip gen-
eration panel to guide efforts to develop appropriate urban trip 
generation products (22).

Phase 1. Local Data Collection  
and Observations

The first step in the District DOT’s urban trip generation research 
was to develop and test a data collection methodology. For Phase 1  
data collection, the research team compiled an initial list of 185 sites–
buildings in the District. Next, each site was assessed against the 
following key criteria to be considered suitable for data collection:

•	 Size. Larger buildings, typically 75 or more residential units.
•	 Use. Predominantly residential with a retail component. Retail 

includes a mix of types of stores that serve both local (i.e., neighbor-
hood retail) and nonlocal customers (i.e., destination retail). Exam-
ples include convenience stores, grocery stores, dry cleaners, and 
specialty foods stores.

•	 Location. Throughout the District. However, most sites that met 
the size and mixed-use criteria were located in areas with rich public 
transportation options, bicycle facilities, and grid street layout.

•	 Occupancy. Sites at or near full occupancy for both residential 
and retail components.

•	 Parking. Ideally, separate parking for retail and residential uses.

From the initial list, 16 sites were chosen for Phase 1 data collection. 
Data were collected at those sites in November and December 2013 
and February 2014 in 15-min intervals between 7:00 and 10:00 a.m. 
and 4:00 and 7:00 p.m., and collection involved counting the number 
of vehicles and persons entering–exiting each building site through 
all garages and doorways. A short intercept survey was undertaken 
whereby a convenience sample of individuals was asked about their 
access–egress modes to–from the building site. These data were sum-
marized, and lessons from that data collection served as a basis for 
refining a methodology for collection of multimodal trip generation 
data from urban mixed-use developments (23).

After the successful Phase 1 data collection, data were collected 
at an additional 46 sites in Phase 2, between April and June 2015, 
for a total of 62 sites. Table 1 summarizes the land use types and key 
site attributes. Most of these 62 sites were then used as the basis for 
the preliminary modeling developed during Phase 2, with some sites 
not meeting the criteria listed earlier being eliminated.



Westrom, Dock, Henson, Watten, Bakhru, Ridgway, Ziebarth, Prabhakar, Ferdous, Kilim, and Paradkar� 31

Phase 2. District DOT Preliminary Trip 
Generation Models

Phase 2 of the District DOT’s work included the development of 
two trip generation models to attempt to create a trip generation 
methodology that worked best for the District. These two models are 
the multimodal accessibility (MMA) method and the District DOT 
MXD+ method.

The MMA method examined relationships between person trip 
rates, vehicle trip rates, mode shares, and a number of environmental 
variables, including these:

•	 Multimodal accessibility scores describing site-specific access 
to jobs and retail opportunities by all modes,

•	 Neighborhood auto ownership levels and population density, and
•	 On-site parking supply.

The analysis could not identify a significant relationship between 
any of these variables and trip rates or mode shares. As a result, the 
final MMA methodology was a series of static trip rates that are a 
function of the magnitude of land use development (e.g., dwelling 
units or thousands of square feet of commercial development).

While this methodology is an improvement over ITE trip generation 
rates because it is based on data collected in the District and generates 
vehicle and person trip estimates by mode, the MMA method does not 
provide comprehensive context sensitivity.

The MXD+ method, initially developed for the U.S. EPA, accounts 
for the degree to which mixed-use sites internally capture travel 
demand and the extent to which smart-growth site design and con-
text result in walking, biking, and transit use on a national scale. 
The EPA MXD+ method was calibrated for District conditions 
on the basis of data collected and local household survey records, 
and the model structure was not altered in Phase 2. The resulting 
District DOT MXD+ method estimates auto, transit, pedestrian, and 
bicycle modes.

The relative results for the initial District DOT MXD+ method 
illustrated a need for further improvements. The MXD+ research 
was focused on auto trips that were based on large sites not confined 
to urban areas. The calibration of this model to fit District DOT’s 
high-density urban sites resulted in an average model error that was 
much greater for walk, bike, and transit trips than for auto trips in both 
the morning and evening, and the discrepancy in validation between 
the auto mode and nonauto modes represented an initial step at new 

insight for a finer-grained level of multimodal analysis. The results 
of Phase 2 were promising, however, and demonstrated that an urban 
trip generation method calibrated to District conditions could be 
achieved.

Phase 3. District DOT Urban Trip 
Generation Model

Phase 3 started with the findings from the MXD+ Phase 2 efforts and 
conducted further statistical analysis to create a District DOT Urban 
Trip Generation Model (i.e., District DOT MXD+). The ultimate 
goal of District DOT MXD+ was to predict person trips per devel-
opment site per mode. Three areas for enhancement were identified: 
(a) improving the model’s ability to predict person trips, (b) testing 
on-site parking supply as an additional variable influencing mode 
choice, and (c) enhancing the transit accessibility measure to dis-
tinguish between good transit accessibility, which exists through-
out most of the District, and great transit accessibility. Focusing on 
the residential-over-retail mixed-use sites resulted in 55 sites for 
analysis.

A set of statistical models was developed to predict (a) total 
person trips and (b) traveler mode choice. The original data were 
structured at the site level and contained variables for total trips and 
mode share by each of five modes: auto driver, auto passenger, transit, 
walk, and bike. Variables related to density, diversity, and land use 
were collected from the Metropolitan Washington Council of Gov-
ernments, the Smart Location Database from the EPA, the ParkRight 
DC calculator, the ITE Trip Generation Manual, DC Geographic 
Information Systems Open Data, and the consultant team.

These variables were intended to be a cross section of the built 
environment within the District that could explain multimodal travel 
behavior. The majority of the variables were at the site-level scale, 
but a number of “neighborhood scale” (as defined by the D.C. Office 
of Planning) variables were tested. Both statistical models were esti-
mated in the statistical package R, an open-source integrated suite of 
software facilities for data manipulation and calculation (24). More 
than 50 variables were considered and tested as part of the statisti-
cal analyses described below. Variables considered included those 
focused on density, diversity, auto ownership, and parking, along 
with other variables found to be significant in published literature. 
Through a hierarchical process of testing variables on the basis of 
multicollinearity and fit, the following models were created.

TABLE 1    Sites by Land Use and Characteristics

Average (range)

Land Use Retail Type Site Count Dwelling Units
On-Site Parking 
(spaces)

Retail Space  
(kilo square feet) Residential Occupancy

Residential + retail Neighborhood 39

218 (40–536) 203 (0–783) 20.7 (1.1–110.4) 93.8% (78.9%–100%)

Destination   9

Residential only na   8

Office + retail Neighborhood   3

Hotel + retail Neighborhood   3
Destination   0

Note: na = not applicable.
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Person Trip Model

Phase 3 sought to improve the model’s ability to predict person trips 
and resulted in a morning peak hour and evening peak hour model.

Concept and Methodology

The person trip modeling used the original data set at the site level 
and was fitted as a linear regression model. The dependent variable 
was the observed person trips from the original District DOT data. 
Independent variables included the D-variables identified previously. 
In addition, data from the ITE Trip Generation Manual, 9th edition, 
were used to obtain variables for person trips calculated by ITE’s trip 
generation linear-fit equations on the basis of each site’s respective 
land use code.

The linear regression was estimated by forming subsets of vari-
ables on the basis of an established hierarchy among variables that 
exhibited the least multicollinearity when tested together. This step 
was an automated process in the R software, which conducted the 
model-building process by successively adding or removing variables 
solely on the basis of t-statistics of their estimated coefficients.

The output of this automated process was a final model that 
represents a subset of independent variables that best fits the linear 
regression and provides a high-level understanding of how the inde-
pendent variables work individually and in conjunction with each 
other. Revisions were made to the output model on the basis of test-
ing for significance by p-value, intuitiveness for the magnitude and 
direction of the coefficients, and comparison with other findings in 
published literature.

Results

The variables resulting in the strongest-fitting model were the same for 
both the morning and the evening models. Table 2 lists the variables, 
units, and R software outputs for each model.

The results of the morning and evening models showed that the 
ITE vehicle trips that used the fitted equations were highly significant, 
with a positive coefficient against the dependent-variable-observed 
person trips. In the results, the intersection density variable for auto-
oriented intersections per square mile was significant in the morning 
model but not the evening model. “Auto-oriented intersections,” a 
variable calculated in the EPA Smart Location Database at the cen-
sus block group, are defined as “intersections where automobiles are 

allowed but pedestrians are restricted, intersections of arterial streets 
signed as 55 mph or higher, intersections of one-way streets signed 
as 40 mph or higher, or intersections of arterial streets of four or more 
lanes of travel in a single direction.” On the basis of intuitiveness, the 
threshold of significance was lifted to support the variables included 
in the evening model, but this finding indicates that the situation may 
be more nuanced and that the type of intersection density influences 
travel behavior.

These results indicate that the ITE Trip Generation Manual is a 
good basis for person trip generation, albeit limited and not overly 
explanatory. Planning theory has posited that person trip genera-
tion may be influenced by the same built environment D-factors as 
mode choice, but empirical research has been limited. These results 
indicate that those factors may be important, as noted by the inclu-
sion of the design variable of intersection density. Further research 
is warranted. They also indicate that an adjustment to ITE rates with 
respect to the density of auto-oriented intersections is appropriate 
for an urban setting such as Washington, D.C. This model performs 
well for this data set but does not contain many degrees of freedom 
or sensitivity and as such should be considered preliminary and an 
opportunity for further research.

Mode Choice Model

The following sections explore the methodology of two mode choice 
models, one for the morning peak and one for the evening peak, and 
the results of the model estimations.

Concept and Methodology

A set of multinomial logistic regression models, or logit models, 
was developed to predict mode choice given various density and 
land use attributes for each site, as well as availability of transpor-
tation infrastructure. Multinomial logistic regression predicts the 
probabilities of different possible outcomes of a categorically dis-
tributed dependent variable given a set of independent variables that 
are either real valued, binary, or categorical (25). The logit model 
allows for more than two categories of the dependent or outcome 
variable, which is mode choice in this case. The logit model uses maxi-
mum likelihood estimation to evaluate the probability of categorical 
membership.

The logit model estimates probabilities among alternatives by using 
utility functions, which are meant to express the level of satisfaction 

TABLE 2    Summary of Person Trip Model

Variable Source Estimate SE p-Value Significance

a.m. Peak Hour (R2 = 0.8643)

ITE V trips (residential) ITE 2.2279 0.2656 3.12 E–11 ***

ITE V trips (commercial) ITE 1.7033 0.4496 .000395 ***

Auto-oriented int. density EPA SLD −6.8232 3.6373 .066282 *

p.m. Peak Hour (R2 = 0.8934)

ITE V trips (residential) ITE 1.4978 0.2763 1.56 E–06 ***

ITE V trips (commercial) ITE 1.4264 0.155 1.67 E–12 ***

Auto-oriented int. density EPA SLD −5.2903 4.6624 .262

Note: int. = intersection; SE = standard error; SLD = Smart Location Database; V = vehicle.
*p-value < .1; **p-value ≤ .05; ***p-value ≤ .01.
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or dissatisfaction with a given mode (26). Once the utility function 
is calculated for each mode, the probability that a given mode will 
be chosen can be calculated. This type of model is appropriate for 
mode choice, as the utility for each mode considers the attributes 
or features of each mode separately during the decision-making 
process. The expected maximum utility is the log sum of all the 
utility values. Probabilities depend on the differences in utilities, not 
actual values.

Independent variables in a logit model are either generic, meaning 
that they have the same value for all alternatives and will receive a 
different coefficient for each alternative, or alternative specific, mean-
ing that each alternative has a different value for the variable and the 
variable will receive a single coefficient for all alternatives. In the 
present mode choice model, all variables are generic.

To estimate the logit model at the site level, data were restructured 
to the trip level and resulted in one observation for each choice situa-
tion (e.g., trip) per site. The five mode choice alternatives were these: 
auto passenger, transit, bike, walk, and the mode choice auto driver 
being the fixed reference-level alternative.

Models were estimated by analyzing a correlation matrix between 
every pair of independent variables to test for multicollinearity. 
Variables were then given a hierarchical priority on the basis of the 
correlation matrix and previous research. The independent variables, 
in order of priority on the basis of the literature review, started with 
those related to density and were followed by accessibility and design. 
Variable strength was tested on the basis of significance levels and 
intuitiveness of the coefficient in relation to magnitude and direction 
consistency. The variable list was then condensed to those that added 
significance to the model and were intuitive in relation to the greater 
context of the model. A manual process of finding the best subset of 
variables that limited multicollinearity was conducted to build the 

strongest fit of independent variables for each mode choice within 
the categorical dependent variable.

Results

The variables resulting in the strongest-fitting model were the same 
for the morning and the evening. Table 3 lists the variables, units, 
and outputs for each model.

These results show a large number of variables that are signifi-
cant and intuitive for the individual modes. Variables that appeared 
as not significant were generally removed from the final model, 
although some nonsignificant but intuitive variables were retained. 
Table 4 lists the variables, units, and elasticities for each mode after 
the nonsignificant variables were filtered out.

“Elasticity” for each variable and mode choice is defined as the 
percentage change in the response variable with respect to a 1% 
change in an explanatory variable. On the basis of elasticities in the 
morning model, the distance from a site to the nearest Metrorail 
station had the greatest responsiveness with respect to the transit 
mode choice in the negative direction for both the morning and 
evening models, an intuitive result in that fewer transit trips may 
be taken with greater distance to a Metrorail station. The share of 
total employment that is within 45 min by Metrorail had the greatest  
responsiveness with the bike mode choice, which may indicate that 
propensity to bike is linked to the choice to live near transit. The 
variable for total parking units with respect to service population, 
the combined sum of employment and population, showed the greatest 
responsiveness with the bike mode choice in the negative direction,  
meaning that more parking may decrease bicycle ridership and 
induce auto use. Alternatively, those people most likely to drive may 
choose locations with parking provided. The variable for employment  

TABLE 3    Summary of Mode Choice Model

Variable Mode Estimate SE p-Value Significance

a.m. Peak Hour (log likelihood = −19,698; McFadden R2 = 0.023788)

Distance to Metrorail (ft) Auto passenger 6.37 E−05 9.34 E−05 .495129
Bike 4.14 E−04 1.39 E−04 .002985 **
Transit −7.88 E−04 6.08 E−05 2.20 E−16 ***
Walk −1.86 E−05 4.76 E−05 .696396

Employment share within 45 min Auto passenger −1.26 E+00 1.74 E+00 .468617
  by Metrorail Bike 9.39 E+00 2.55 E+00 .000229 ***

Transit 4.26 E+00 1.11 E+00 .000133 ***
Walk 3.96 E+00 9.00 E−01 1.11 E−05 ***

Parking provided per service population Auto passenger −7.83 E−01 2.39 E−01 .001035 **
Bike −1.83 E+00 3.71 E−01 8.11 E−07 ***
Transit 1.65 E−01 1.41 E−01 .241656
Walk −3.31 E−02 1.11 E−01 .765092

Neighborhood population density Auto passenger −1.85 E−07 3.46 E−06 .957331
Bike 4.17 E−05 5.04 E−06 2.22 E−16 ***
Transit 1.07 E−05 2.12 E−06 5.06 E−07 ***
Walk 2.12 E−05 1.78 E−06 2.20 E−16 ***

Employment within 1 mi Auto passenger −2.34 E−07 6.49 E−07 .718294
Bike −1.05 E−06 9.67 E−07 .278974
Transit −3.58 E−07 4.31 E−07 .405746
Walk 2.85 E−06 3.32 E−07 2.20 E−16 ***

Mode constant Auto passenger −1.10 E+00 5.01 E−01 .027805 *
Bike −5.71 E+00 7.47 E−01 2.09 E−14 ***
Transit −1.04 E+00 3.20 E−01 .001094 **
Walk −1.32 E+00 2.63 E−01 4.93 E−07 ***

(continued on next page)
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TABLE 4    Elasticities for Mode Choice Model

Variable Source Auto Passenger Bike Transit Walk

a.m. Peak Hour

Distance to Metrorail (ft) D.C. Office of Planning — 0.38 −0.60 —

Employment share within 45 min by Metrorail MWCOG — 2.29 0.86 0.55

Parking provided per service population Data Collection −0.29 −0.70 — —

Neighborhood population density MWCOG — 1.12 0.24 0.32

Employment within 1 mi MWCOG — — — 0.13

p.m. Peak Hour

Distance to Metrorail (ft) D.C. Office of Planning −0.22 0.36 −0.61 −0.06

Employment share within 45 min by Metrorail MWCOG — 1.43 0.80 0.59

Parking provided per service population Data Collection — −0.50 −0.03 −0.15

Neighborhood population density MWCOG — 0.85 0.33 0.36

Employment within 1 mi MWCOG 0.25 0.15 0.06 0.16

Note: Elasticities are included for statistically significant variables in each mode. MWCOG = Metropolitan Washington Council of Governments; 
— = data not included.

TABLE 3 (continued)    Summary of Mode Choice Model

Variable Mode Estimate SE p-Value Significance

p.m. Peak Hour (log likelihood = −26,867; McFadden R2 = 0.023642)

Distance to Metrorail (ft) Auto passenger −2.51 E−04 6.48 E−05 .000107 ***
Bike 3.83 E−04 9.08 E−05 2.40 E−05 ***
Transit −7.54 E−04 5.35 E−05 2.20 E−16 ***
Walk −1.25 E−04 3.97 E−05 .001605 **

Employment share within 45 min Auto passenger −9.54 E−01 1.26 E+00 .448633
  by Metrorail Bike 5.98 E+00 1.75 E+00 .000658 ***

Transit 3.89 E+00 1.02 E+00 .000127 ***
Walk 5.15 E+00 7.78 E−01 3.38 E−11 ***

Parking provided per service population Auto passenger 1.35 E−01 1.51 E−01 .371292
Bike −1.32 E+00 2.37 E−01 2.63 E−08 ***
Transit −1.06 E−01 1.32 E−01 .420875
Walk −8.58 E−01 1.01 E−01 2.20 E−16 ***

Neighborhood population density Auto passenger 1.72 E−06 2.58 E−06 .50564
Bike 3.20 E−05 3.67 E−06 2.20 E−16 ***
Transit 1.45 E−05 2.02 E−06 6.83 E−13 ***
Walk 2.82 E−05 1.59 E−06 2.20 E−16 ***

Employment within 1 mi Auto passenger 3.33 E−06 4.92 E−07 1.36 E−11 ***
Bike 1.98 E−06 6.83 E−07 .003797 **
Transit 9.54 E−07 4.21 E−07 .023498 *
Walk 4.19 E−06 3.10 E−07 2.20 E−16 ***

Mode constant Auto passenger −8.83 E−01 3.54 E−01 .012652 *
Bike −4.16 E+00 5.07 E−01 2.22 E−16 ***
Transit −9.66 E−01 2.83 E−01 .000649 ***
Walk −9.05 E−01 2.20 E−01 4.06 E−05 ***

***p-value ≤ .01; **p-value ≤ .05; *p-value < .1.

within 1 mi of the site was most positively responsive to the walk and 
bike modes, which may indicate that walking and biking increase 
with greater proximity to jobs.

Validation of Combined Person Trip  
and Mode Choice Model

Table 5 shows the results by mode for District DOT MXD+ when the 
person trip and mode choice models were applied in combination and 
the relative performance for auto and all person trips between the 
ITE Trip Generation Manual and District DOT MXD+, respectively.

Figure 1 displays scatter plots for District DOT MXD+ and ITE 
rates for auto and person trips for the morning and evening peak 
hours, respectively, and exhibits the robust results generated via 
District DOT MXD+.

Concluding Thoughts  
and Model Application

District DOT MXD+ consists of total person trips and mode choice 
models. First, person trips were calculated by a model utilizing vari-
ables for ITE trip rates and the density of auto-oriented intersections. 
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TABLE 5    Validation of District DOT MXD+

Validation Statistic Auto Vehicle Trips Transit Trips Walk Trips Bike Trips All Person Trips

a.m. Peak Hour

DDOT MXD+ Average model error 4% 9% 4% 14% 5%
R2 0.66 0.63 0.67 0.46 0.67

ITE Average model error 129% NA NA NA −40%
R2 0.60 NA NA NA 0.66

p.m. Peak Hour

DDOT MXD+ Average model error 4% 8% 4% 5% 5%
R2 0.79 0.76 0.64 0.65 0.76

ITE Average model error 169% NA NA NA −36%
R2 0.66 NA NA NA 0.66

Note: DDOT = District Department of Transportation; NA = not available.

FIGURE 1    Comparison of results of District DOT model and ITE raw data: (a) auto trips, morning peak 
hour; (b) auto trips, evening peak hour; (c) all person trips, morning peak hour; (d) all person trips,  
evening peak hour; and (e) key to graphs.
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Second, mode choice was calculated by a logit model that incorpo-
rated distance to a Metrorail station, employment share, employment, 
parking, and population density. Combining of the outputs from both 
models estimated trip generation by mode. The full set of models 
achieved better statistical performance by mode than ITE and other 
available existing research, and included sensitivity to local environ-
ment and on-site components. In addition, District DOT MXD+ was 
sensitive to the amount of parking provided on site, a major step for-
ward in the understanding of how parking provisions influence travel 
behavior at a local-site level.

District DOT MXD+ is extremely valuable for more accurately 
estimating multimodal trips for proposed mixed-use residential urban 
buildings and brings a better understanding of the level of impact of 
a planned building. These benefits allow agencies to negotiate more 
accurately mitigations from developers on the basis of transporta-
tion system impacts. Person trip observations in Washington, D.C. 
were significantly (30% to 50%) higher than the limited person trip 
data presented in the ITE vehicle trip generation resources. Higher 
person trip making and high nonauto mode shares may indicate 
that more trips are made on foot with less trip chaining because of 
increased access to goods and services.

District DOT MXD+ addresses the limitations of the ITE approach 
in that it more accurately estimates auto demand at a proposed 
development and thus facilitates correct estimates of traffic and 
environmental impacts, including air quality and greenhouse gas 
emissions. Unlike ITE, District DOT MXD+ accurately estimates 
nonauto trips for improved infrastructure investment decisions that 
balance vehicular capacity expansion, including parking infrastruc-
ture, with investments for pedestrians, bicyclists, and transit infra-
structure. Although a robust body of research on person trip models 
does not exist, District DOT MXD+ acts as a first step of progress 
in understanding the relationship between person trip generation 
and the urban context.

District DOT MXD+ is structurally simple and easily imple-
mented into a usable tool. From the results of District DOT MXD+, 
a spreadsheet application was designed that District DOT will use 
during developmental review to confirm trip generation analyses 
from other parties.

Next Steps

Next steps for the District DOT include opportunities for more-focused 
work on differentiating trip generation rates from varying types of  
urban retail destinations. District DOT MXD+ presented here is 
valid for residential-over-nonspecific-retail sites only. Exploration  
of variation among retail type could glean further trip generation  
guidance. Other types of sites, such as office, hotel, or retail only, may 
also show different travel behavior. In addition, possibly because 
of the homogeneity of the sites surveyed or a larger relationship in 
urban travel behavior, relationships were not found between trip 
making or mode share and socioeconomic factors. Furthermore, 
data used to derive District DOT MXD+ were collected predomi-
nantly in 2013 and 2014. Travel behavior in the District continues 
to change, most notably with the rise of transportation network 
companies such as Uber and Lyft, as well as the popularity of the 
bikeshare system.

The majority of the research on trip generation for mixed-use 
developments in urban settings has relied on pivoting from ITE-based 
estimates. The field of travel demand modeling contains a large 
library of research that involves the use of household travel surveys 

and other observed data to derive non-ITE-based trip generation 
models. These models are often abstracted for use in large regional 
travel models and do not contain explicit relationships to the built 
environment at a local scale. Future research should aim to converge 
models for local trip generation with models for regional travel 
demand model trip generation.

Further research should also investigate the factors within the 
ITE rates that are significant in relation to person trip generation. 
Factors such as employment and population accessibility, activity 
density, and diversity are likely candidates to be further explored. 
Other research in the realm of person trip generation may illustrate 
factors that could be included in future analyses.

Next steps should further consider the potential for exploring a 
model that does not pivot to person trips from vehicle trip genera-
tion rates in the ITE Trip Generation Manual. ITE is already under-
going a shift toward person trip generation, with the 10th edition 
of the Manual planned to have person trip generation rates and a 
call issued for person trip data. Several agencies, including ITE, the 
California Department of Transportation, the National Association 
of City Transportation Officials, and other jurisdictions, are doing 
research on urban person trip generation that could inform a direct 
person trip model.

Next steps for application of the model will include converting the 
spreadsheet tool into a web-based application, with more-advanced 
geographic information system capabilities, which will provide 
greater availability, transparency, and implementation and thereby 
democratize analysis similar to what the District DOT ParkRight 
calculator (http://www.parkrightdc.org/) does. This development 
would allow for a finer-grained level of analysis at the parcel level, 
as opposed to the current application, which conducts analysis on 
the basis of neighborhood-level characteristics. The web applica-
tion would also allow for the public at large to investigate how trip 
generation varies by location within the District.
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